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The induction of cancer on mouse skin by initiation-promotion protocols occurs through stages in which
a benign squamous papilloma is an obligate precursor of squamous cell carcinoma. Activation of the Ha-
ras gene is sufficient to produce the papilloma phenotype, while additional genetic changes are required
for malignant conversion. The introduction of Ha-ras into normal keratinocytes suppresses the expression
of differentiation markers, keratin Kl and K10, and loricrin (a cornified envelope precursor) and, to a
lesser extent, filaggrin, at the level of transcription. However, cells initiated by Ha-ras express a none-
pidermal keratin, K8. The transcription of K8 in these cells is sensitive to the level of medium Ca2", being
abundant in 0.5 mM Ca2" and not detected in 0.05 mM Ca2". Epidermal differentiation is regulated by
signalling, which involves changes in phosphatidylinositol turnover and intracellular Ca2+. Cells initiated
by Ha-ras do not differ from normal keratinocytes in their intracellular Ca2" response patterns, at least
in response to changes in extracellular Ca2+ and serum factors. However, c-Ha-ra keratinocytes have a
high basal level of phosphatidylinositol (PI) turnover, which is additive with several other inducers of this
pathway, including Ca2+ and aluminum fluoride. Additional studies suggest that high turnover of the PI
pathway is incompatible with differentiation-specific gene expression in keratinocytes. We suggest this
negative relationship is mediated through elevated diacylglycerol production and chronic down-modulation
of protein kinase C. Protein kinase C is known to be essential for expression of differentiation-related
genes in keratinocytes.

Several approaches have been taken to evaluate genes involved in malignant conversion. Stable papilloma
cell lines, which express a codon 61 A to T transversion mutation in the Ha-ras gene, were used as recipients
of exogenous cloned oncogenes. TheEIA and myc genes did not alter the tumor phenotype when transfected
cells were tested in vivo. In contrast, two transforming constructs of v-fos caused malignant conversion,
while c-fos was ineffective in this regard. He-ras and v-fos were also introduced into normal keratinocytes
using defective retroviruses and the recipient cells tested in vivo for tissue phenotype. Co-infected cells
produced carcinomas, v-Ha-ras alone produced papillomas, and v-fos alone produced normal skin. The
capacity of transforming fos constructs to cause malignant progression in benign cells with a Ha-ras
mutation suggests an indirect mechanism through activation of transcription of cellular genes. Among
the fos-regulated gene family are secreted proteases, and several of these enzymes are elevated in tumors
converted by the combined action of fos and ras oncogenes. These results suggest the possibility that
activation of the protease cascade could occur early in malignant progression. The disruptive consequences
of active protease secretion on extracellular regulatory processes could account for the disordered expres-
sion of keratinocyte-specific genes in carcinomas.

Introduction cepts regarding the biology of chemical carcinogenesis.
Cancer induction in this tissue requires at least three

The induction of tumors by the application of chem- distinct stages: initiation, promotion, and malignant
icals to the skin of mice has revealed fundamental con- '
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conversion. Initiation occurs rapidly, is irreversible,
and is commonly caused by mutagens. Initiation persists
throughout the lifetime of the animal but may not result
in tumors in the absence of further treatment.

Recently, a point mutation in the c-Ha-ras gene has
been strongly linked to the initiated phenotype in skin
(1-3). Promotion results from the application of pro-
moting agents that are not mutagenic in most cases.
Promotion must occur after initiation and requires re-
peated exposures to effective agents with an obligate
frequency. The effects of individual promoting expo-
sures are reversible. Promoters alter tissue homeosta-
sis and provide an environment for the selective out-
growth of initiated cells.
The clinical consequence of initiation and promotion

is the production of multiple benign tumors, squamous
papillomas, each representing the clonal expansion of
single initiated cells. Papillomas may persist or regress
and infrequently undergo malignant conversion to squa-
mous carcinomas. Since the low frequency of sponta-
neous malignant conversion can be enhanced by expo-
sure of papilloma-bearing mice to mutagens (4,5), the
conversion event is likely to represent additional genetic
changes in the initiated cell population. Because mul-
tiple genetic changes in the same cell are required to
produce a cancer cell, the epigenetic process of tumor
promotion is the rate-limiting step in cancer develop-
ment in vivo. By increasing the clone size of the initiated
population expressing a relevant mutation, promoters
enhance the probability that a second genetic change
will occur in that population.

Tumor Phenotype In Vivo
Markers Expressed by Tumors

Considerable data have accumulated on the pheno-
typic alterations produced in skin cells during the mul-
tistage development of squamous cancer (Table 1). In
normal skin, two keratins, K5 (Mr 60,000) and K14 (Mr
55,000), are transcribed largely in basal cells, although
the proteins persist in the upper layers (6). The com-
mitment to differentiate is associated with the tran-
scription oftwo suprabasal keratins, Ki (Mr 67,000) and
K10 (Mr 59,000), in the first spinous layer (6). Tran-
scripts for Ki and K10 diminish as cells migrate into

Table 1. Expression of differentiation markers in tumors.

Normal Expression in tumors
Marker in vivo
protein expression Papillomas Carcinomas
K5 Epidermal basal layer + + + + + + + +
K14 + + + + + + + +
Kl Epidermal spinous + + -

K10 layer + + -

Filaggrin Epidermal granular + + -

Loricrin layer + + -

K6 Hyperproliferative + + + + + + +
epidermis

K13 Internal stratified - ++ +
epithelium

the granular cell layer where Ki and K10 proteins are
polymerized into tonofilament bundles. In this layer,
new proteins are expressed including filaggrin, an Mr
27,000, interfilamentous matrix protein, and loricrin, a
major component of the cornified envelope (7,8).

In benign tumors produced by chemical initiation, the
distribution of K14 protein is similar to that in normal
skin, while the abundance of Ki and K10 is reduced
although the tissue distribution remains suprabasal (6).
Transcription of K14 is aberrant in benign tumors since
transcripts persist throughout many of the suprabasal
cell layers (6). Transcripts for Ki and K10 are low in
the first suprabasal layer of papillomas, unlike in normal
skin where they are abundant. Some papilloma cells that
express Ki or K10 are capable of proceeding through
S-phase as indicated by the incorporation of BrdU into
nuclei of Ki-positive cells after pulse labeling. Thus,
papilloma cells display an altered response to signals
that in normal cells trigger the early transcription of
differentiation-specific genes and the inhibition of pro-
liferation-specific functions. The pattern of expression
for loricrin in benign tumors is similar to that for normal
skin, although loricrin protein levels are reduced. Be-
nign tumors commonly display many filaggrin-positive
cell layers (9). Thus, expression of the late differentia-
tion-related genes is less disturbed in benign neoplasms
than that of the early differentiation markers.

Keratin expression in carcinomas is highly disturbed
(6). K14 protein and transcripts are diffusely expressed
in carcinomas, while protein and transcripts for Ki and
K10 are essentially absent. Both loricrin and filaggrin
proteins are greatly diminished in carcinomas, and tran-
scripts are in low abundance. The near absence of de-
tectable transcripts and proteins for suprabasal kera-
tins, loricrin, and filaggrin provides a marker for
malignant conversion in the mouse skin carcinogenesis
model. By immunofluorescence analysis, foci negative
for expression of these markers can be noted prior to
detection of a definitive change in cellular phenotype by
light microscopy, suggesting that these are early events
that characterize malignant conversion (6). In addition,
carcinomas express keratins, such as K13 and K19,
which are never expressed in normal skin but are char-
acteristic of internal epithelia (10). By contrast, the pro-
liferation rate (as measured by labeling index) in car-
cinomas is similar to that of papillomas (11), suggesting
that the changes in differentiation-related gene expres-
sion are central to the conversion phenotype.

Characteristics of the Initiated
Phenotype
Considerable insight regarding the regulation of nor-

mal skin growth and differentiation has evolved from
studies of keratinocytes in cell culture (12). These stud-
ies have revealed that extracellular Ca2" is a major
determinant of the differentiation state of epidermal
cells. Under conditions of Ca2e reduced to 5% of the
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level in serum (0.05 mM), keratinocytes have a basal
cell phenotype. At Ca2+ of 0.12 mM, the suprabasal
markers are induced in a process regulated transcrip-
tionally (13). The expression of suprabasal markers is
coordinated in a temporal sequence similar to that seen
in skin in vivo (13). When extracellular Ca2+ is > 0.3
mM, cultured keratinocytes differentiate, but expres-
sion of the suprabasal markers is much reduced. Dif-
ferentiating cells stop proliferating, form cornified en-
velopes, and slough from the culture dish probably due
to activation of the envelope-crosslinking enzyme, epi-
dermal transglutaminase (14). Epidermal cells from in-
itiated skin and benign or malignant skin tumors, as
well as cells exposed to chemical carcinogens in vitro,
are resistant to the induction of differentiation by Ca2"
in vitro (15). This has formed the basis for a method to
select for cells with the neoplastic phenotype (16) and
is consistent with a defect in the response to differen-
tiation signals as a fundamental change in neoplastic
transformation of skin cells (17).

Keratinocyte Phenotype Produced by
Activation of the Ha-ras Gene
We have used the Ha-ras gene to analyze the phen-

otype of initiated keratinocytes in vitro. When intro-
duced into normal cultured mouse basal keratinocytes
(0.05 mM Ca2") by a defective retroviral vector, v-Ha-
ras increases the proliferation rate of the cultured pop-
ulation by 5-fold (18). Furthermore, the infected cells
are resistant to terminal differentiation in 1 mM Ca2+
medium, although the proliferation rate is markedly re-
duced at that concentration of Ca2" (19). Transfer of v-
Ha-ras keratinocytes from culture to a prepared skin
graft bed produces papillomas on recipient mice (20),
consistent with the complete initiating activity of this
single genetic change.

Additional studies have now been performed to char-
acterize the v-Ha-ras phenotype in vitro (Table 2).
When infected basal cells (0.05 mM Ca2+) are switched
to 0.12 mM Ca2", the expression of both protein and
mRNA for the suprabasal keratin markers Ki and K10
and the granular cell marker loricrin is inhibited. Thus,

Table 2. Phenotypic and metabolic characteristics of
keratinocytes initiated by a v-Ha-ras oncogene.

Marker Changes produced by v-Ha-ras
In vivo

Skin graft Papilloma
Suprabasal keratins Expression reduced

In vitro
Labeling index Increased 5-fold
Basal cell keratins Expressed
Suprabasal keratins Absent
Loricrin Reduced
Filaggrin Variable
Keratins 8 and 18 Expressed (not detected in

nornal keratinocytes)
Intracellular Ca2+ response Normal
Phosphatidylinositol turnover Increased 2-fold
Diacylglycerol content Increased 6-fold

v-Ha-ras impairs the pathways involved in response to
a differentiation signal. Expression of the granular cell-
specific filaggrin protein and mRNA is less consistently
affected by the exogenous v-Ha-ras oncogene at the
permissive Ca2+, suggesting that filaggrin might have
distinct control mechanisms in addition to its common
Ca2" regulation with the other markers. Infection of
cells with an identical retroviral vector containing only
a neor gene did not alter the differentiation response to
0.12 mM Ca2+.

Cytoskeletal extracts of v-Ha-ras keratinocytes con-
tain a novel 58 kD protein band that is also sensitive to
Ca2+. Western blotting of relevant cell extracts indi-
cates that the 58 kD protein is keratin 8 (K8) because
it reacts with two monoclonal antisera (35 f3H 11 and
Troma 1) specific for that keratin marker (21,22). Pre-
viously, keratin 8 was shown to be expressed in SV-40
immortalized human keratinocytes (23) and transiently
in developing human hair follicles (24). K8 transcripts
are present in epidermal cells transduced with v-Ha-
ras and cultured in 0.5 mM Ca2" medium but not in
normal keratinocytes. These results are consistent with
a Ca2+-dependent change in the program of epidermal
gene expression in these initiated cells.

Intracellular Signaling Pathways in v-Ha-
ras Keratinocytes
The expression of differentiation markers in cultured

keratinocytes is tightly linked to specific changes in in-
tracellular Ca2' (Cal) and phosphatidylinositol (PI) me-
tabolism (25-27). However, the immediate Ca, response
to a change in extracellular Ca2e is identical in control
and v-Ha-ras keratinocytes when measured by digital
image analysis of changes in fluorescence of the Ca2'-
sensitive dye, Fura 2 (28). Sustained Cai responses over
a 24-hr measurement period are also nearly identical
for v-Ha-ras and control keratinocytes. A pharmaco-
logically induced increase in Ca' caused by exposure to
6.5 ,uM ionomycin did not restore expression of differ-
entiation markers in v-Ha-ras cells but did cause the
cells to cornify and slough from the culture dish. This
suggests that the lack of marker expression in v-Ha-
ras cells is not due to a resetting ofthe Ca, requirements
for gene activation to a higher level. Together these
results indicate that a direct alteration in Cai response
does not account for the influence of v-Ha-ras on ker-
atinocyte gene expression.

In other cell types, the Ha-ras oncogene can influence
phosphatidylinositol metabolism, probably by virtue of
its G protein character (29-31). Whether this is specific
to ras oncogenes and germane to their transforming
activity is in dispute. However, G proteins are likely to
be essential in the activation of the phospholipase C,
which regulates phosphatidylinositol metabolism. The
relevance of PI metabolism to the differentiation of ker-
atinocytes (25-27) suggests that alterations in this path-
way via Ha-ras activation could be important in pro-
ducing the initiated phenotype.
To explore the influence of v-Ha-ras on keratinocyte
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PI metabolism, equilibrium labeling of cultured cells
with 3H-inositol and HPLC analysis of labeled cell ex-
tracts were performed. Introduction of v-Ha-ras into
normal keratinocytes increases basal levels of inositol
phosphates over controls in 0.05 mM Ca2+, indicating
a greater steady-state rate of PI metabolism. Turnover
is increased even further when the cells are switched
to 0.12 mM or 1.4 mM Ca2". The incremental increase
above the already elevated basal level of PI turnover
by an increase in extracellular Ca2" suggests that v-
Ha-ras and Ca2e are not stimulating PI metabolism via
the same effector, although partial effects for each can-
not be ruled out. Aluminum fluoride (Al/F) also stim-
ulates basal PI metabolism in normal cells even more
potently than Ca2" (32). The Al/F results suggest that
G protein activation is important in PI turnover in ker-
atinocytes (33). Al/F also inhibits the expression of su-
prabasal markers of differentiation in keratinocytes.
These results suggest that excessively elevated levels
of PI metabolites may be inhibitory for expression of
differentiation markers in skin cells.
The influence ofv-Ha-ras and certain pharmacological

agents on the expression of keratinocyte-specific differ-
entiation markers may provide a clue to the pathways
influenced by the activation of Ha-ras during initiation
of carcinogenesis. Conditions that are nonpermissive for
the expression of specific epidermal markers are asso-
ciated with high activity of the PI cycle or high intra-
cellular Ca2". Additionally, conditions which downmo-
dulate protein kinase C, such as pretreatment of
keratinocytes with phorbol esters or bryostatin abro-
gate the keratinocyte response to an appropriate Ca2"
signal for marker expression in vitro or to the physio-
logical signals in vivo (34,35).

Previously, we have shown that initiated keratino-
cyte cell lines from a variety of sources are resistant to
the induction of terminal differentiation by phorbol es-
ters and are defective in expression of differentiation
markers (36,37). Some of these lines, as well as v-Ha-
ras cells, are stimulated to proliferate by phorbol esters,
but the magnitude is usually small (19,36). Further-
more, a limited number of initiated cells so far examined
have phorbol ester binding proffles that differ from nor-
mal cells (38). Consistent with the above results are
reports in other systems where the introduction of a
ras oncogene stimulates PI turnover (29), elevates dia-
cylglycerol levels (30,31), and causes a decrease in pro-
tein kinase C (31). Microinjection of protein kinase C
can restore such cells to a control response pattern (39).
Together these findings suggest that the initiated phen-
otype in keratinocytes is associated with the inactiva-
tion (partial or total), subcellular redistribution, or
changed isozyme expression ofprotein kinase C. Studies
to test this hypothesis are currently in progress.

Malignant Conversion
Genetic Basis for Malignant Conversion

Several lines of evidence suggest that a single genetic
change is sufficient to cause malignant progression in

skin carcinogenesis (Table 3). Papilloma-derived cell
lines, which do not express a detectable oncogene, ad-
vanced to anaplastic carcinomas when transfected with
the human EJ bladder carcinoma Ha-ras oncogene (40).
Furthermore, the c-Ha-ras mutation, commonly het-
erozygous in chemically induced papillomas, is fre-
quently homozygous and amplified in chemically induced
squamous carcinomas (41), suggesting that Ha-ras on-
cogene dosage is important in determining tumor phen-
otype. These conclusions are consistent with in vitro
studies indicating that two different oncogenes may act
in concert to achieve malignant transformation of pri-
mary rat embryo cells (42) and that the required com-
binations are specific. The introduction of certain viral
oncogenes into Syrian hamster cells previously immor-
talized by carcinogens (43) causes malignant progres-
sion, suggesting that chemically induced mutations can
cooperate with cloned oncogenes. The cooperative ac-
tion of pairs of oncogenes has suggested the existence
of complementation groups in which some genes alter
cells to a phenotype that is not tumorigenic (e.g., ad-
enovirus ElA and polyoma large T-antigen), while oth-
ers impart a neoplastic phenotype (e.g., the ras onco-
gene family and polyoma middle T) (44). These groupings

have evolved from studies of mesenchymal cells.

Analysis of Malignant Conversion by
Oncogene Transfection into Neoplastic
Keratinocytes
The analysis of malignant conversion in vivo is par-

ticularly problematic because the time between a con-
version event in a single cell and its clinical manifes-
tation in a preexisting benign tumor is likely to be long
enough to accumulate additional genetic changes in the
converted cell. Cell lines have been established from
initiated mouse skin or mouse skin papillomas that are
phenotypically stable in vitro and produce benign tu-

Table 3. Influence of specific oncogenes on malignant
conversion of skin-derived cells.

In vivo phenotype
Subcutaneous

Exogenous gene Skin graft injection

In vitro
phenotype

Ca2+-induced
differentiation

Transfection into SP-1 and 308 cells
neoR Papilloma No growth Resistant
myc Papilloma No growth Resistant
EIA Papilloma No growth Resistant
c-fos Papilloma No growth Resistant
v-fos Carcinoma Carcinoma Resistant
c-foslv-fos chimera Carcinoma Carcinoma Resistant

Retroviral infection into normal keratinocytes
neoR Normal skin No growth Sensitive
v-fos Normal skin No growth Sensitive
v-Ha-ras Papilloma Papillomatous Resistant

cyst
v-fos/v-Ha-ras Carcinoma Carcinoma Resistant
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mors when grafted as part of a reconstituted skin in
nude mice (45). These cells are not tumorigenic by sub-
cutaneous injection. Two cell lines, SP-1 and 308, have
been used as recipients for transfected oncogenes
to investigate malignant conversion in vitro (46) (Table
3). Both cell lines contain an activated c-Ha-ras gene
containing an A to T transversion in codon 61, as ex-
pected from their origin in skin exposed to 7,12-di-
methylbenz[a]anthracene. Plasmid DNAs, encoding a
specific oncogene construct, were stably transfected
into each cell line. Certain oncogenes were selected be-
cause they had been previously shown to cooperate with
a ras oncogene to enhance transformation in other cell
lines. A rearranged murine plasmacytoma-derived c-
myc gene (minus exon 1; pSVc-myc-1) (42) or the ad-
venovirus 5 ElA gene (lAneo) (44) represented this
class. A second oncogene set, chosen because of re-
ported specific expression during embryonic skin de-
velopment (47), included the FBJ v-fos(pSVdhfrv-fos)
(48) or a 5' human c-fos/3'FBJ v-fos(HVV) (49) chimeric
transforming construct. All plasmids were used in co-
transfections with a neomycin phosphotransferase gene
(neoR) contained in pSV2neo to select for transformants.
The products of these oncogenes have a nuclear location
and are involved in transcriptional control of other
genes. Following transfection and selection in G418 me-
dium, the uptake and expression of exogenous DNA
was confirmed in recipient cells by DNA and RNA hy-
bridization analysis (46). Transfected cells were then
grafted to nude mice or injected subcutaneously, and
the tumors were examined histologically and charac-
terized immunohistochemically.
Both fos constructs caused malignant conversion in

either cell line as defined by the squamous cell carcinoma
histology of tumors from grafted cells and the devel-
opment of carcinomas after subcutaneous injection (46).
Neither ElA, c-myc, nor pSV2neo altered the benign
tumor phenotype. Tumors derived by introduction of
either of thefos oncogenes lacked detectable suprabasal
keratin markers using specific antisera and indirect im-
munofluorescence staining. Tumors from ElA, myc, or
pSV2neo transfectants expressed low levels of supra-
basal keratins in a pattern indistinguishable from pa-
rental cells. All tumors expressed basal cell keratins.
While a remarkable transformation of the in vivo tumor
phenotype was induced by transformingfos oncogenes,
no in vitro phenotypic changes were detected. All trans-
fectant lines were similar to the parental cells with re-
gard to cell growth, and all remained anchorage depen-
dent. The expression of the endogenous c-Ha-ras
mRNA was similar in parental cells and the fos-trans-
fected cell lines and tumors, indicating that fos-me-
diated conversion was not through an effect on Ha-ras
gene expression. The introduction of human proto-on-
cogene c-fos using an endogenous promoter construct
did not cause malignant conversion in either cell line,
although transcripts for the exogenous gene were de-
tected.

Analysis of Malignant Conversion by
Retroviral Transduction of Genes into
Normal Keratinocytes

Since 308 and SP-1 cells could have acquired undo-
cumented genetic changes when established in vitro,
genes other than the mutated c-Ha-ras allele may have
contributed to the complementary action of thefos on-
cogene in malignant conversion. To directly test the
cooperativity of ras and fos oncogenes in causing ma-
lignant conversion, primary, newborn epidermal cells
were used as targets for these genes (50) (Table 3).
Replication-defective retroviruses were produced by
transfecting plasmids containing v-Ha-ras or v-fos on-
cogenes into Psi 2 cells, selecting transformant cells,
and collecting supernatants (51). Newborn mouse ker-
atinocytes were isolated, cultured as basal cells in 0.05
mM Ca2+ medium for 2 days, and exposed to retroviral
supernatants (20). After viral exposure, cells were re-
moved from culture and tested in vivo by subcutaneous
injection into nude mice or by grafting in a reconstituted
skin graft system. A defective retrovirus constructed
with neor was used as a virus control.
The results of eight independent experiments dem-

onstrated that combined exposure to v-fos and v-Ha-
ras resulted in squamous cell carcinomas by both sub-
cutaneous injection and dermal graft tests within sev-
eral weeks (50). Exposure to only v-Ha-ras produced
squamous papillomas predominantly. Newborn keratin-
ocytes infected with a v-fos retrovirus or a neoR retro-
virus produced normal skin. The benign tumors evolv-
ing from v-Ha-ras infection expressed K14, Ki, and K10
keratins, while the tumors evolving from combined in-
fection with v-fos and v-Ha-ras expressed K14 but not
the suprabasal keratin pair. Nucleic acid hybridization
analysis on tumor RNA confirmed that the exogenous
oncogenes were expressed appropriately in each group.
From these studies it appears that two oncogene
changes are sufficient to produce the malignant phen-
otype in mouse keratinocytes, although the spontaneous
occurrence of additional mutational events cannot be
ruled out. Interestingly, in the case of thefos oncogene,
its activation may yield a normal skin phenotype, al-
though cells with this phenotype would be subject to
malignant tranformation by activation of a single com-
plementing oncogene.

Cellular and Molecular Changes
Responsible for Malignant Conversion
The induction of the malignant squamous phenotype

by cooperation of two oncogenes, v-fos and v-Ha-ras,
provides a good model system to analyze the biochem-
istry of conversion. It appears that the v-fos gene prod-
uct is the critical element in the conversion event. The
c-fos protein modulates transcription by forming a het-
erodimeric complex with AP1, a family of transcription
factors that includes the jun proto-oncogene (52,53).
The complex generally increases transcription of other

7



8 YUSPA ET AL.

genes but may downregulate fos expression. The v-fos
transcript is more stable than c-fos RNA and encodes
an altered protein with an enhanced half-life, thus sus-
taining the action offos within the nucleus (54,55). As
a transcriptional enhancer, v-fos may act indirectly to
induce malignant conversion in keratinocytes by chang-
ing the expression of specific cellular genes. Thus, the
gene pool regulated byfos may be particularly relevant
to squamous malignancy.

Experimental analysis has implicated fos/AP1 in reg-
ulating a disparate group ofgenes including al-collagen,
adipocyte P2 (a lipid-binding protein), metallothionein
IIA, and two secreted proteases, stromelysin (transin)
and collagenase (55). Previously, it was shown that stro-
melysin is commonly elevated in mouse skin carcinomas,
but not papillomas (56), while collagenase is elevated in
many malignancies and has previously been associated
with invasion and metastasis (57). These secreted en-
zymes are components of a cascade that includes other
classes of proteases. Members of this cascade are se-
creted as proenzymes, requiring activation themselves
by partial proteolysis. A critical activating function is
attributed to plasmin, the product of the action of uro-
kinase on the plasmin precursor, plasminogen, which is
abundant in circulating fluids (58). Our preliminary find-
ings indicate that tumors produced by transfection of
v-fos plasmids. into 308 or SP-1 cells or by infecting
primary cells with v-fos and v-Ha-ras-defective retro-
viruses have elevated transcripts for stromelysin and
urokinase when compared to benign tumors or normal
skin (D. A. Greenhalgh et al., manuscript in prepara-
tion). Furthermore, analysis of a limited number of
chemically induced skin tumors indicates that high lev-
els of both stromelysin and urokinase transcripts are
found in carcinomas but not papillomas when compared
to normal skin levels.
In vivo, malignant conversion is often a variable pro-

cess that is preceded by progressive dysplastic changes
(59). Certain oncogenes (such as neu and p53) intro-
duced into papilloma cell lines accentuate dysplastic
changes in the resultant tumors in vivo (60) but do not
convert to malignancy. The fos oncogene may be par-
ticularly potent in producing malignant conversion in a
single step because it regulates protease secretion, and
this could be a pathway that is most direct in producing
the malignant phenotype. By invoking a powerful cas-
cade of enzymes in cells already expressing an intrinsic
defect in their differentiation program (by virtue of the
initiating mutation), the action of the oncogene is am-
plified. Protease secretion could disrupt protein com-
ponents of the extracellular environment (e.g., stroma,
basement membrane, intercellular matrix, diffusible
factors, gradients) that are required to maintain proper
structural organization in the benign tumor. Tissue ar-
chitecture is required for the orderly expression of dif-
ferentiation markers (13). Low levels of protease se-
cretion may be recognized as a dysplastic histotype
associated with loss of specific markers when analyzed
by molecular probes. As the structural control processes
undergo further disruption, severe disturbances in or-

ganization, cell-cell relationships, and epithelial-stromal
interaction would result in disorderly proliferation and
loss of differentiated function.
The proposed involvement of proteases as early ef-

fectors in malignant conversion has implications for the
mechanism of tumor suppression. The protease cascade
is regulated in part by the elaboration of specific inhib-
itors for individual proteases (61). The loss of an inhib-
itor could result in enhancement of proteolytic activity
having similar phenotypic consequences as overexpres-
sion of the protease. One implication of such reasoning
is that protease inhibitors could compose one class of
tumor suppressor genes.
The authors thank Ulrike Lichti for critically reading the manu-
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